Effect of SALL4 on the Proliferation, Invasion and Apoptosis of Breast Cancer Cells

Author:

Liu Chong1,Yao Fan1,Mao Xiaoyun1,Li Wanming2,Chen Hang3ORCID

Affiliation:

1. Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China

2. Department of Cell Biology, School of Life Sciences, China Medical University, Shenyang, China

3. Experiment Teaching Center of Functional Subjects, College of Basic Medicine, China Medical University, Shenyang, China

Abstract

Objective: We aimed to identify the expression of Sal-like 4 (SALL4) in breast cancer tissues and to explore the role of this gene in the carcinogenesis of breast cancer cells. Methods: A total of 62 paired breast cancer and noncancerous tissue samples were obtained from patients with breast cancer. SALL4 expression patterns and their association with clinicopathological characteristics were investigated by qRT-PCR, western blotting, and immunochemistry in breast cancer tissues. After the knockdown of SALL4 by short hairpin RNAs (shRNAs), the proliferative, invasive, and apoptotic abilities of MDA-MB-435 and MDA-MB-468 cells (breast cancer cell lines) were measured by colony formation and CCK-8 assays, wound healing and transwell assays, and flow cytometry, respectively. Results: SALL4 expression was higher in breast cancer tissues than that in the paired noncancerous tissues, and increased SALL4 expression in tumor tissues was closely related to tumor size and lymphatic metastasis. Furthermore, functional experiments revealed that SALL4 knockdown inhibited the cell proliferation, induced cell cycle arrest in G0/G1phase and apoptosis, and decreased the ability of migration and invasion in breast cancer cells. Additionally, our study first demonstrated that SALL4 played a critical role in modulating the tumorigenicity of breast cancer cells via the WNT/β-catenin signaling pathway. Conclusions: Our results suggest that the expression of SALL4 is upregulated in breast cancer, and this upregulation is involved in the regulation of cell growth, invasion, and apoptosis. Hence, SALL4 may be a promising target for diagnosis and therapy in patients with breast cancer.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3