Deep Learning-Based Prediction of Radiation Therapy Dose Distributions in Nasopharyngeal Carcinomas: A Preliminary Study Incorporating Multiple Features Including Images, Structures, and Dosimetry

Author:

Wang Yixuan1,Piao Zun1,Gu Huikuan1,Chen Meining1,Zhang Dandan1,Zhu Jinhan1ORCID

Affiliation:

1. State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China

Abstract

Purpose: Intensity-modulated radiotherapy (IMRT) is currently the most important treatment method for nasopharyngeal carcinoma (NPC). This study aimed to enhance prediction accuracy by incorporating dose information into a deep convolutional neural network (CNN) using a multichannel input method. Methods: A target conformal plan (TCP) was created based on the maximum planning target volume (PTV). Input data included TCP dose distribution, images, target structures, and organ-at-risk (OAR) information. The role of target conformal plan dose (TCPD) was assessed by comparing the TCPD–CNN (with dose information) and NonTCPD–CNN models (without dose information) using statistical analyses with the ranked Wilcoxon test ( P < .05 considered significant). Results: The TCPD–CNN model showed no statistical differences in predicted target indices, except for PTV60, where differences in the D98% indicator were < 0.5%. For OARs, there were no significant differences in predicted results, except for some small-volume or closely located OARs. On comparing TCPD–CNN and NonTCPD–CNN models, TCPD–CNN's dose-volume histograms closely resembled clinical plans with higher similarity index. Mean dose differences for target structures (predicted TCPD–CNN and NonTCPD–CNN results) were within 3% of the maximum prescription dose for both models. TCPD–CNN and NonTCPD–CNN outcomes were 67.9% and 54.2%, respectively. 3D gamma pass rates of the target structures and the entire body were higher in TCPD–CNN than in the NonTCPD–CNN models ( P < .05). Additional evaluation on previously unseen volumetric modulated arc therapy plans revealed that average 3D gamma pass rates of the target structures were larger than 90%. Conclusions: This study presents a novel framework for dose distribution prediction using deep learning and multichannel input, specifically incorporating TCPD information, enhancing prediction accuracy for IMRT in NPC treatment.

Funder

Major Research Plan

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3