High Expression of SRSF10 Promotes Colorectal Cancer Progression by Aberrant Alternative Splicing of RFC5

Author:

Xu Shuai12ORCID,Zhong Fangmin12,jiang Junyao12,Yao Fangyi12,Li Meiyong12,Tang Mengxin2,Cheng Ying12,Yang Yulin123,Wen Wen123,Zhang Xueru123,Huang Bo123,Wang Xiaozhong123ORCID

Affiliation:

1. Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China

2. The Second Affiliated Hospital of Nanchang University, Nanchang, China

3. School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang 330006, Jiangxi, China

Abstract

Background Colorectal cancer (CRC) remains a global health concern with persistently high incidence and mortality rates. However, the specific pathogenesis of CRC remains poorly understood. This study aims to investigate the role and pathogenesis of serine and arginine rich splicing factor 10 (SRSF10) in colorectal cancer. Methods Bioinformatics analysis was employed to predict SRSF10 gene expression in CRC patients. Functional experiments involving SRSF10 knockdown and overexpression were conducted using CCK8, transwell, scratch assay, and flow cytometry. Additionally, the PRIdictor website was utilized to predict the SRSF10 interaction site with RFC5. The identification of different transcripts of SRSF10-acting RFC5 pre-mRNA was achieved through agarose gel electrophoresis. Result The knockdown of SRSF10 inhibited the proliferation and migration ability of CRC cells, while promoting apoptosis and altering the DNA replication of CRC cells. Conversely, when SRSF10 was highly expressed, it enhanced the proliferation and migration ability of CRC cells and caused changes in the cell cycle of colorectal cancer cells. This study revealed a change in the replicating factor C subunit 5 (RFC5) gene in colorectal cancer cells following SRSF10 knockdown. Furthermore, it was confirmed that SRSF10 increased RFC5 exon2-AS1(S) transcription variants, thereby promoting the development of colorectal cancer through AS1 exclusion to exon 2 of RFC5. Conclusion In summary, this study demonstrates that SRSF10 promotes the progression of colorectal cancer by generating an aberrantly spliced exclusion isoform of AS1 within RFC5 exon 2. These findings suggest that SRSF10 could serve as a crucial target for the clinical diagnosis and treatment of CRC.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3