Identification and Integrate Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer Based on Bioinformatics Analysis

Author:

Gong Ke1,Zhou Huiling1,Liu Haidan2,Xie Ting1,Luo Yong1,Guo Hui1,Chen Jinlan1,Tan Zhiping2,Yang Yifeng1,Xie Li1ORCID

Affiliation:

1. Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China

2. The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China

Abstract

Background: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer affecting humans. However, appropriate biomarkers for diagnosis and prognosis have not yet been established. Here, we evaluated the gene expression profiles of patients with NSCLC to identify novel biomarkers. Methods: Three datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes were analyzed. Venn diagram software was applied to screen differentially expressed genes, and gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Cytoscape was used to analyze protein-protein interactions (PPI) and Kaplan–Meier Plotter was used to evaluate the survival rates. Oncomine database, Gene Expression Profiling Interactive Analysis (GEPIA), and The Human Protein Atlas (THPA) were used to analyze protein expression. Quantitative real-time polymerase (qPCR) chain reaction was used to verify gene expression. Results: We identified 595 differentially expressed genes shared by the three datasets. The PPI network of these differentially expressed genes had 202 nodes and 743 edges. Survival analysis identified 10 hub genes with the highest connectivity, 9 of which ( CDC20, CCNB2, BUB1, CCNB1, CCNA2, KIF11, TOP2A, NDC80, and ASPM) were related to poor overall survival in patients with NSCLC. In cell experiments, CCNB1, CCNB2, CCNA2, and TOP2A expression levels were upregulated, and among different types of NSCLC, these four genes showed highest expression in large cell lung cancer. The highest prognostic value was detected for patients who had successfully undergone surgery and for those who had not received chemotherapy. Notably, CCNB1 and CCNA2 showed good prognostic value for patients who had not received radiotherapy. Conclusion: CCNB1, CCNB2, CCNA2, and TOP2A expression levels were upregulated in patients with NSCLC. These genes may be meaningful diagnostic biomarkers and could facilitate the development of targeted therapies.

Funder

the Natural Science Foundation for Young Scientists of Hunan Province

the National Science Foundation for Young Scientists of China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3