Comparison of Prospectively Generated Glioma Treatment Plans Clinically Delivered on Magnetic Resonance Imaging (MRI)-Linear Accelerator (MR-Linac) Versus Conventional Linac: Predicted and Measured Skin Dose

Author:

Wang Michael H.1,Kim Anthony12,Ruschin Mark12,Tan Hendrick1,Soliman Hany1,Myrehaug Sten1,Detsky Jay1,Husain Zain1,Atenafu Eshetu G.3ORCID,Keller Brian12,Sahgal Arjun1,Tseng Chia-Lin1ORCID

Affiliation:

1. Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada

2. Department of Medical Physics, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, Ontario, Canada

3. Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario, Canada

Abstract

Introduction: Magnetic resonance imaging-linear accelerator radiotherapy is an innovative technology that requires special consideration for secondary electron interactions within the magnetic field, which can alter dose deposition at air–tissue interfaces. As part of ongoing quality assurance and quality improvement of new radiotherapy technologies, the purpose of this study was to evaluate skin dose modelled from the treatment planning systems of a magnetic resonance imaging-linear accelerator and a conventional linear accelerator, and then correlate with in vivo measurements of delivered skin dose from each linear accelerator. Methods: In this prospective cohort study, 37 consecutive glioma patients had treatment planning completed and approved prior to radiotherapy initiation using commercial treatment planning systems: a Monte Carlo-based algorithm for magnetic resonance imaging-linear accelerator or a convolution-based algorithm for conventional linear accelerator. In vivo skin dose was measured using an optically stimulated luminescent dosimeter. Results: Monte Carlo-based magnetic resonance imaging-linear accelerator plans and convolution-based conventional linear accelerator plans had similar dosimetric parameters for target volumes and organs-at-risk. However, magnetic resonance imaging-linear accelerator plans had 1.52 Gy higher mean dose to air cavities ( P < .0001) and 1.10 Gy higher mean dose to skin ( P < .0001). In vivo skin dose was 14.5% greater for magnetic resonance imaging-linear accelerator treatments ( P = .0027), and was more accurately predicted by Monte Carlo-based calculation ( ρ = 0.95, P < .0001) versus convolution-based ( ρ = 0.80, P = .0096). Conclusion: This is the first prospective dosimetric comparison of glioma patients clinically treated on both magnetic resonance imaging-linear accelerator and conventional linear accelerator. Our findings suggest that skin doses were significantly greater with magnetic resonance imaging-linear accelerator plans but correlated better with in vivo measurements of actual skin dose from delivered treatments. Future magnetic resonance imaging-linear accelerator planning processes are being designed to account for skin dosimetry and treatment delivery.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3