Inhibition of 6-Phosphogluconate Dehydrogenase Reverses Epirubicin Resistance Through Metabolic Reprograming in Triple-Negative Breast Cancer Cells

Author:

Xu Jiali12,Ren Guosheng12,Cheng Qiao1ORCID

Affiliation:

1. Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

2. Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

At present, chemotherapy is the most effective strategy for treating triple-negative breast cancer (TNBC), but its efficacy was limited by the development of chemo-resistance. The exact mechanism of chemoresistance still remains unclear. This study aims to examine whether 6-phosphogluconate dehydrogenase (6PGD), a key enzyme in the oxidative pentose phosphate pathway (PPP), could promote the resistance of TNBC cells to epirubicin. A TNBC epirubicin-resistant cell line was developed by increasing concentration and the effectiveness was tested. The expression and knockdown efficiency of 6PGD were further validated by performing quantitative real-time PCR (qPCR) and Western blot. The effects of 6PGD on parental and drug-resistant TNBC cell lines were verified based on proliferation and apoptosis experiments. Finally, nicotinamide adenine dinucleotide phosphate (NADPH) and lactate quantitative experiments were performed to examine the mechanism of 6PGD in promoting drug resistance. Epirubicin-resistant cancer cells exhibited a higher level of 6PGD in contrast to epirubicin-sensitive cells. In addition, 6PGD inhibited by genetic and pharmacological approaches significantly suppressed the growth and survival of both epirubicin-sensitive and epirubicin-resisteant TNBC cells. It should be noted that 6PGD inhibition sensitized epirubicin-resistant TNBC cells to epirubicin treatment. Moreover, it was also found that the levels of NADPH and lactate increased in epirubicin-resistant TNBC cells but decreased in response to 6PGD inhibition. The present results indicated that 6PGD inhibition disrupted metabolic reprogramming in epirubicin-resistant TNBC cells. Our work demonstrated that 6PGD inhibition reversed the resistance of TNBC cells to epirubicin, providing an alternative therapeutic choice to tackle the challenge of epirubicin resistance in TNBC treatment.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3