A Realistic Breast Phantom Proposal for 3D Image Reconstruction in Digital Breast Tomosynthesis

Author:

Polat Adem1ORCID,Kumrular Raziye Kubra2ORCID

Affiliation:

1. Department of Electrical-Electronics Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey

2. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

Abstract

Objectives: Iterative (eg, simultaneous algebraic reconstruction technique [SART]) and analytical (eg, filtered back projection [FBP]) image reconstruction techniques have been suggested to provide adequate three-dimensional (3D) images of the breast for capturing microcalcifications in digital breast tomosynthesis (DBT). To decide on the reconstruction method in clinical DBT, it must first be tested in a simulation resembling the real clinical environment. The purpose of this study is to introduce a 3D realistic breast phantom for determining the reconstruction method in clinical applications. Methods: We designed a 3D realistic breast phantom with varying dimensions (643-5123) mimicking some structures of a real breast such as milk ducts, lobules, and ribs using TomoPhantom software. We generated microcalcifications, which mimic cancerous cells, with a separate MATLAB code and embedded them into the phantom for testing and benchmark studies in DBT. To validate the characterization of the phantom, we tested the distinguishability of microcalcifications by performing 3D image reconstruction methods (SART and FBP) using Laboratory of Computer Vision (LAVI) open-source reconstruction toolbox. Results: The creation times of the proposed realistic breast phantom were seconds of 2.5916, 8.4626, 57.6858, and 472.1734 for 643, 1283, 2563, and 5123, respectively. We presented reconstructed images and quantitative results of the phantom for SART (1-2-4-8 iterations) and FBP, with 11 to 23 projections. We determined qualitatively and quantitatively that SART (2-4 iter.) yields better results than FBP. For example, for 23 projections, the contrast-to-noise ratio (CNR) values of SART (2 iter.) and FBP were 2.871 and 0.497, respectively. Conclusions: We created a computationally efficient realistic breast phantom that is eligible for reconstruction and includes anatomical structures and microcalcifications, successfully. By proposing this breast phantom, we provided the opportunity to test which reconstruction methods can be used in clinical applications vary according to various parameters such as the No. of iterations and projections in DBT.

Funder

Türkiye Bilimsel ve Teknolojik Araştirma Kurumu

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3