An Externally Validated Nomogram for Predicting the Overall Survival of Patients With Diffuse Large B-Cell Lymphoma Based on Clinical Characteristics and Systemic Inflammatory Markers

Author:

Liu Yajiao1ORCID,Sheng Li1,Hua Haiying12,Zhou Jingfen12,Zhao Ying2,Wang Bei3

Affiliation:

1. Wuxi School of Medicine, Jiangnan University, Wuxi, China

2. Department of Hematology, Affiliated Hospital of Jiangnan University, Wuxi, China

3. Institute of Integration of Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China

Abstract

Background: Systemic inflammatory indicators are clinically significant in guiding diffuse large B-cell lymphoma (DLBCL) prognosis. However, which inflammatory markers are the best predictors of DLBCL prognosis is still unclear. In this study, we aimed to create a nomogram based on the best inflammatory markers and clinical indicators to predict the overall survival of patients with DLBCL. Patients and methods: We analyzed data from 423 DLBCL patients from two institutions and divided them into a training set, an internal validation set, and an external validation set (n = 228, 97, and 98, respectively). The least absolute shrinkage and selection operator and Cox regression analysis were used to develop nomograms. We assessed model fit using the Akaike information criterion and Bayesian information criterion. The concordance index (C-index), calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to assess the nomogram's predictive performance and clinical net benefit and compared with the International Prognostic Index (IPI) and National Comprehensive Cancer Network (NCCN)-IPI. Results: The inclusion variables for the nomogram model were age, Eastern Cooperative Oncology Group performance status, lactate dehydrogenase level, the systemic immune-inflammation index (SII), the prognostic nutritional index (PNI), and β-2 microglobulin (β-2 MG) level. In the training cohort, the nomogram showed better goodness of fit than the IPI and NCCN-IPI. The C-index of the nomogram (0.804, 95% CI: 0.751-0.857) outperformed the IPI (0.690, 95% CI: 0.629-0.751) and NCCN-IPI (0.691, 95% CI: 0.632-0.750). The calibration curve, ROC curve, and DCA curve analysis showed that the nomogram has satisfactory predictive power and clinical utility. Similar results were found in the validation cohort. Conclusion: The nomogram integrated with the clinical characteristics and inflammatory markers is beneficial to predict the prognosis of patients with DLBCL.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3