Experimental and Preliminary Clinical Study of Real-Time Registration in Liver Tumors During Respiratory Motion Based on a Multimodality Image Navigation System

Author:

Ren Chao1ORCID,Liu Shi-rong2,Wu Wen-bo3,Yu Xiao-ling1,Cheng Zhi-gang1,Liu Fang-yi1,Liang Ping1

Affiliation:

1. Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China

2. Peking University Third Hospital, Beijing, China

3. Baihui Weikang Medical Robot Technology Co, Ltd, Beijing, China

Abstract

Purpose: To develop a fusion imaging system that combines ultrasound and computed tomography for real-time tumor tracking and to validate the accuracy of performing registration via this approach during a specific breathing phase. Materials and Methods: The initial part of the experimental study was performed using iodized oil injection in pig livers and was focused on determining the accuracy of registration. Eight points (A1-4 and B1-4) at different positions and with different target sizes were selected as target points. During respiratory motion, we used our self-designed system to perform the procedure either with (experimental group, E) or without (control group, C) the respiratory monitoring module. The registration errors were then compared between the 2 groups and within group E. The second part of this study was designed as a preliminary clinical study and was performed in 18 patients. Screening was performed to determine the combination of points on the body surface that provided the highest sensitivity to respiratory motion. Registration was performed either with (group E) or without (group C) the respiratory monitoring module. Registration errors were compared between the 2 groups. Results: In part 1 of this study, there were fewer registration errors at each point in group E than at the corresponding points in group C ( P < .01). In group E, there were more registration errors at points A1 and B1 than at the other points ( P < .05). There was no significant difference in registration errors among the remaining points. During part 2 of the study, there was a significant difference in the registration errors between the 2 groups ( P < .01). Conclusions: Real-time fusion registration is feasible and can be accurately performed during respiratory motions when using this system.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3