ATP5A1 Participates in Transcriptional and Posttranscriptional Regulation of Cancer-Associated Genes by Modulating Their Expression and Alternative Splicing Profiles in HeLa Cells

Author:

Song, BA Yisa1,Wang, MA Fei1,Wei, MA Yaxun2,Chen, BA Dong23ORCID,Deng, BA Gang4

Affiliation:

1. Qinghai People's Hospital Xining, Xining, Qinghai, P.R. China

2. ABLife Inc., Wuhan, P.R. China

3. ABLife BioBigData Institute, Wuhan, P.R. China

4. Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, Hubei, P.R. China

Abstract

Background: Aberrant expression and alternative splicing of oncogenes are the driving events in tumor initiation and development. But how these events are regulated in cancer cells is largely unknown. Functions of ATP5A1, an important mitochondrial ATP synthase gene, in transcriptional and posttranscriptional regulation were explored in this study. Methods: ATP5A1 was overexpressed using plasmid-transformed HeLa cells, and its influence on cell apoptosis and proliferation is evaluated. Transcriptome sequencing was then performed using RNA-seq to study the changes in gene expression and regulation of alternative splicing events. Validation of the implicated genes was achieved using RT-qPCR analysis. Results: It was found that ATP5A1 could significantly promote cellular apoptosis, but it had no influence on cell proliferation. ATP5A1 overexpression significantly increased the expression levels of genes associated with the innate immune response, angiogenesis, and collagen catabolic processes. This included enrichment of MMP2 and MMP19. It was also found that ATP5A1 could interfere with the alternative splicing of hundreds of genes associated with glucose homeostasis, HIF-1 signaling activation, and several pathways associated with cancers. Eight ATP5A1-regulated differentially expressed genes and 3 genes altered by splicing were selected and validated using RT-qPCR analysis. Conclusions: In summary, we illustrate the regulatory functions of ATP5A1 on the transcriptome of HeLa cells by exploring its influence on gene expression and alternative splicing. The results suggest that ATP5A1 may play an important regulatory role in cervical cancer cells by regulating expression and alternative splicing of cancer-associated genes. This study provides novel insights into the current understanding of the mechanisms of ATP5A1 on carcinogenesis and cancer progression.

Funder

Scientific research project of Qinghai health and Family Planning Commission

ABLife Young Medical Doctor BigData Training Fund

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3