Differentiation of Intrahepatic Cholangiocarcinoma and Hepatic Lymphoma Based on Radiomics and Machine Learning in Contrast-Enhanced Computer Tomography

Author:

Xu Hanyue12,Zou Xiuhe3,Zhao Yunuo12,Zhang Tao12,Tang Youyin4,Zheng Aiping12,Zhou Xianghong12,Ma Xuelei1ORCID

Affiliation:

1. Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China

2. West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China

3. Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu 610041, PR China

4. Department of Liver surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China

Abstract

Purpose: This study aimed to explore the ability of texture parameters combining with machine learning methods in distinguishing intrahepatic cholangiocarcinoma (ICCA) and hepatic lymphoma (HL). Method: A total of 28 patients with HL and 101 patients with ICCA were included. A total of 45 texture features were extracted by the software LifeX from contrast-enhanced computer tomography (CECT) images and 38 of them were eligible. A total of 5 feature selection methods and 9 feature classification methods were used to build the best diagnostic models, combining with the 10-fold cross-validation to assess the accuracy of these models. The discriminative ability of each model was evaluated by receiver operating characteristic analysis. Result: A total of 45 predictive models were built by the cross combination of each selection and classification method to differentiate ICCA from HL. According to the results of test group, most of the models performed well with a large area under the curve (AUC) (>0.85) and high accuracy (>0.85). Random Forest (RF)_Linear Discriminant Analysis (LDA) (AUC  =  0.997, accuracy  =  0.969) was the best model among all the 45 models. Conclusion: Combining texture parameters from CECT with multiple machine learning models can differentiate ICCA and HL effectively, and RF_LDA performed the best in this process.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3