MiR-495 Inhibits Cisplatin Resistance and Angiogenesis in Esophageal Cancer by Targeting ATP7A

Author:

Li Zhuanghua1,Li Shaowen2,Wen Yongqin1,Chen Jingtang1,Liu Kejun1ORCID,Jia Jun1

Affiliation:

1. Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, China

2. Shenzhen People’s Hospital, Shenzhen, China

Abstract

Background: Cancer resistance to chemotherapy is closely associated with changes in transporter systems. In this study, we investigated the possible regulation of 1 copper ion transporter (ATP7A; ATPase copper transporting alpha) by microRNA miR-495 and its implications in cisplatin resistance and angiogenesis in esophageal cancer. Methods: MiR-495 and ATP7A mRNA expression in clinical tissue samples and 2 cancer cell lines (Eca-109 and TE1) were detected by quantitative real-time polymerase chain reaction. The levels of miR-495 and ATP7A expression in Eca-109 and TE1 cells were increased by transfection with miR-495 mimics and ATP7A-overexpression vectors. Cell proliferation, apoptosis, and angiogenesis were assessed by CCK-8, flow cytometry, and tube formation assays, respectively. The levels of TNF-α and VEGF in cell culture supernatants were detected by enzyme linked immunosorbent assay, and in situ expression of NLRP3 was measured by immunofluorescence. The binding of miR-495 to ATP7A sequences was verified by dual luciferase reporter assays. Results:ATP7A expression was significantly increased, while miR-495 expression was decreased in the cancer tissues of esophageal cancer patients. MiR-495 mimics decreased the proliferation and promoted the apoptosis of cisplatin-resistant Eca-109 and TE1 cells. Furthermore, tube formation by human umbilical vein endothelial cells, TNF-α and VEGF secretion, and the levels of MRP1, ABCG1, ABCA1, and NLRP3 expression in cisplatin-resistant Eca-109 and TE1 cells were all reduced by miR-495 mimics. MiR-495 was shown to directly bind to ATP7A gene sequences to repress ATP7A expression in Eca-109 and TE1 cells. ATP7A overexpression substantially abrogated the changes in proliferation, apoptosis, angiogenesis, and above-mentioned gene expression in cisplatin-resistant Eca-109 and TE1 cells. Conclusions: MiR-495 suppressed cisplatin resistance and angiogenesis in esophageal cancer cells by targeting ATP7A gene expression.

Funder

Research and development fund project of Dongguan People's Hospital.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3