Current Probes for Imaging Carbonylation in Cellular Systems and Their Relevance to Progression of Diseases

Author:

Dilek Ozlem1ORCID

Affiliation:

1. University of the District of Columbia, College of Arts and Sciences, Washington, DC, USA

Abstract

Oxidative stress resulted from reactive oxygen or nitrogen species in biological systems has a significant role in the diagnosis/progression of several human diseases. Human diseases associated with oxidative stress include Alzheimer's disease, chronic lung disease, chronic renal failure, cancer, diabetes, and fibrosis. In oxidative stress conditions, carbonylation process can be described as one of the most common modifications in biomolecules that takes place in the presence of carbonyl (C = O) groups which are introduced into molecules by direct metal-catalyzed oxidation of certain amino acids or indirectly by reaction with the oxidation of lipids and sugars. At a molecular cellular level, carbonylation can cause some defective biological consequences or chemical transformations in cells. During this process, specifically, carbonylated proteins can be accumulated in cells and trigger to develop some diseases in human body. The role of the accumulation of carbonylated proteins in the progression of several diseases has also been reported in the literature, such as neurodegenerative diseases, diabetes, obesity, aging, and cancer. Early detection of carbonylation process is, therefore, very critical to monitor these diseases at an early stage. Finding a suitable biomarker or probe is very challenging due to the need for multiple criteria: high fluorescence efficiency, stability, toxicity, and permeability. If they are designed with a good strategy, these probes are highly effective in cell biology applications and they can be used as good diagnostic tools for monitoring oxidative stress-induced carbonylation in relevant diseases. This review highlights the design and use of recent fluorescent probes for visualization of carbonylation in cellular systems and the relationship between oxidative stress and carbonyl species for causing long-term disease complications.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Reference83 articles.

1. Cai Z, Yan L-J. Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res. 2013;1(1):15-26.

2. Protein Carbonyl Levels– An Assessment of Protein Oxidation

3. Oxidative Stress - an overview ScienceDirect Topics. Accessed September 2, 2022. https://www.sciencedirect.com/topics/neuroscience/oxidative-stress

4. The Role of Oxidative Stress in Parkinson’s Disease

5. Oxidative Stress, Redox Homeostasis and Cellular Stress Response in Ménière’s Disease: Role of Vitagenes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3