Feasibility Study of 3D-VMAT-Based GRID Therapy

Author:

Zhang Xin12ORCID,Griffin Robert J2,Galhardo Edvaldo P23,Penagaricano Jose24

Affiliation:

1. Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA

2. Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA

3. Department of Radiation Oncology, Genesis Care, Bradenton, FL, USA

4. Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA

Abstract

Background: Spatially fractionated radiotherapy (GRID) could effectively de-bulk tumor volumes for shallow and deep-seated locally advanced tumors. A new treatment planning method using the three-dimensional-volumetric modulated arc therapy (VMAT) technique combined with a novel, software-generated, virtual GRID block (VGB) was developed which allows better conformity plans (VMAT-GRID) and maintain the GRID dosimetric characteristics. The dosimetric metrics calculated via the valley/peak ratio ( Dmin/ Dmax), D90/ D10, gross tumor volume (GTV) mean dose ( Dmean), GTV equivalent uniform dose (EUD), and normal tissue maximum dose. Methods: Twenty-five patients with tumor volumes ranging between 71.6 cc and 4683 cc at various tumor sites were retrospectively studied. The prescription was 20 Gy to the maximum point of GTV in a single fraction, and the VMAT-GRID plan was generated using 6 MV/10 MV flattening-filter-free beams. Results: The optimized VGB was designed with the median center-to-center distance of 27 mm, and 9 mm for the median diameter of the opening area in this study. These 2 values can be used to design any optimized VGB, the final VGB may be modified to generate a patient-specific VGB. The median GTV mean dose was 918 (877- 938) cGy, and the median GTV EUD dose was 818 (597-916) cGy. In terms of dose inhomogeneity, the median valley-to-peak dose ratio was 0.07 (0.02-0.26); and the median ratio of D90/ D10 was 0.70 (0.38-0.94). For the organ-at-risk doses, there was a rapid dose drop-off in the normal tissue area immediately adjacent to the target, and the maximum global doses were all located inside the GTV. Conclusion: Our results indicated that the VMAT-GRID planning approach could successfully deliver dose with acceptable GRID dose metric while sparing the normal tissue especially in the region near the target due to the rapid dose drop-off and restricting maximum dose inside the target.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3