Automatic Segmentation of the Gross Target Volume in Non-Small Cell Lung Cancer Using a Modified Version of ResNet

Author:

Zhang Fuli1ORCID,Wang Qiusheng2,Li Haipeng2

Affiliation:

1. Radiation Oncology Department, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China

2. School of Automation Science and Electrical Engineering, Beihang University, Beijing, China

Abstract

Radiotherapy plays an important role in the treatment of non-small cell lung cancer. Accurate segmentation of the gross target volume is very important for successful radiotherapy delivery. Deep learning techniques can obtain fast and accurate segmentation, which is independent of experts’ experience and saves time compared with manual delineation. In this paper, we introduce a modified version of ResNet and apply it to segment the gross target volume in computed tomography images of patients with non-small cell lung cancer. Normalization was applied to reduce the differences among images and data augmentation techniques were employed to further enrich the data of the training set. Two different residual convolutional blocks were used to efficiently extract the deep features of the computed tomography images, and the features from all levels of the ResNet were merged into a single output. This simple design achieved a fusion of deep semantic features and shallow appearance features to generate dense pixel outputs. The test loss tended to be stable after 50 training epochs, and the segmentation took 21 ms per computed tomography image. The average evaluation metrics were: Dice similarity coefficient, 0.73; Jaccard similarity coefficient, 0.68; true positive rate, 0.71; and false positive rate, 0.0012. Those results were better than those of U-Net, which was used as a benchmark. The modified ResNet directly extracted multi-scale context features from original input images. Thus, the proposed automatic segmentation method can quickly segment the gross target volume in non-small cell lung cancer cases and be applied to improve consistency in contouring.

Funder

Beijing Municipal Science and Technology Commission

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3