DOT1L Epigenetically Regulates Autophagy and Mitochondria Fusion in Cell Lines of Renal Cancer

Author:

Hou Yanguang12ORCID,Liu Jiachen12,Huang Shiyu12,Wang Lei1,Hu Juncheng12,Liu Xiuheng1

Affiliation:

1. Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China

2. Wuhan University Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China

Abstract

Objectives DOT1L, a histone methylase, is overexpression in renal cell cancer. However, the role and detailed molecular mechanism of DOT1L involved in renal cancer development remain unknown. Methods The inhibition of DOT1L was used by SGC0946 and short hairpin RNA silencing. Monodansylcadaverine staining and transmission electron microscope were performed to detect autophagy changes as a result of the inhibition of DOT1L. MitoTracker Red assay was used to analyze mitochondrial morphology. The autophagy markers and mitochondria-related proteins were analyzed by Western blot, qPCR, or immunofluorescence. ChIP assay was performed to demonstrate H3K79me2 is involved in the direct regulation of Farnesoid X receptor transcription. Results DOT1L inhibition increased autophagy activity and promoted mito chondria fusion in cell lines of renal cancer. Inhibition of DOT1L upregulated levels of LC3α/β, P62, MFN1, and MFN2, which contributed to autophagy activity or mitochondria fusion. DOT1L knockdown showed a similar the above process. DOT1L inhibition or silencing resulted in AMP-activated protein kinase activation and mammalian target of rapamycin inhibition. Mechanistically, the DOT1L inhibitor and its short hairpin RNAs decreased the expression of Farnesoid X receptor in a histone methylase-dependent manner. Conclusion We revealed the essential role of Farnesoid X receptor in regulating DOT1L-induced autophagy and mitochondrial fission through the AMP-activated protein kinase/mammalian target of rapamycin pathway in cell lines of renal cancer, which may provide new insights into the pathogenesis of renal cell cancer.

Funder

Fundamental Research Funds for the Central Universities

key research and development program of Hubei Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3