Proton Beam Range and Charge Verification Using Multilayer Faraday Collector

Author:

Yeap Ping L12ORCID,Lew Kah S13,Koh Wei Y C1ORCID,Chua Clifford G A1,Wibawa Andrew1,Master Zubin1,Lee James C L13,Park Sung Y14,Tan Hong Q1

Affiliation:

1. Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore

2. Department of Oncology, University of Cambridge, UK

3. Division of Physics and Applied Physics, Nanyang Technological University, Singapore, Singapore

4. Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore

Abstract

Purpose A daily quality assurance (QA) check in proton therapy is ensuring that the range of each proton beam energy in water is accurate to 1 mm. This is important for ensuring that the tumor is adequately irradiated while minimizing damage to surrounding healthy tissue. It is also important to verify the total charge collected against the beam model. This work proposes a time-efficient method for verifying the range and total charge of proton beams at different energies using a multilayer Faraday collector (MLFC). Methods We used an MLFC-128-250 MeV comprising 128 layers of thin copper foils separated by thin insulating KaptonTM layers. Protons passing through the collector induce a charge on the metallic foils, which is integrated and measured by a multichannel electrometer. The charge deposition on the foils provides information about the beam range. Results Our results show that the proton beam range obtained using MLFC correlates closely with the range obtained from commissioning water tank measurements for all proton energies. Upon applying a range calibration factor, the maximum deviation is 0.4 g/cm2. The MLFC range showed no dependence on the number of monitor units and the source-to-surface distance. Range measurements collected over multiple weeks exhibited stability. The total charge collected agrees closely with the theoretical charge from the treatment planning system beam model for low- and mid-range energies. Conclusions We have calibrated and commissioned the use of the MLFC to easily verify range and total charge of proton beams. This tool will improve the workflow efficiency of the proton QA.

Funder

Duke-NUS Oncology Academic Program

Clinical & Systems Innovation Support – Innovation Seed Grant

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3