Simple Scoring Model Based on Enhanced CT in Preoperative Prediction of Biological Risk of Gastrointestinal Stromal Tumor

Author:

Wang Yating1ORCID,Bai Genji1ORCID,Zhang Hui1,Chen Wei1

Affiliation:

1. Department of Medical Imaging, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China

Abstract

Objective: To construct a simple scoring model for predicting the biological risk of gastrointestinal stromal tumors based on enhanced computed tomography (CT) features. Methods: The clinicopathological and imaging data of 149 patients with primary gastrointestinal stromal tumor were retrospectively analyzed in our hospital. According to the risk classification, the patients were divided into low-risk group and high-risk group. The features of enhanced CT were observed and recorded. Univariate and multivariate logistic regression models were used to determine the predictors of high-risk biological behaviors of gastrointestinal stromal tumor, and then a simple scoring model was constructed according to the regression coefficients of each predictor. The receiver operating characteristic curve was used to evaluate the predictive ability of the model. Results: There was no significant difference between the risk classification of gastrointestinal stromal tumor with gender and age ( P = .168, .320), while significant difference was found between the tumor size and location ( P < .001). Univariate and multivariate logistic regression analyses showed that tumor size, enlarged vessels feeding or draining the mass, peritumoral lymph node enlargement, and venous phase contrast enhancement rate were independent predictors of the biological risk of gastrointestinal stromal tumor ( P < .05). The area under the curve value of tumor size, enlarged vessels feeding or draining the mass, peritumoral lymph node enlargement, and venous phase contrast enhancement rate as the high-risk predictor of gastrointestinal stromal tumor were 0.955, 0.729, 0.680, and 0.807, respectively. Receiver operating characteristic curve results showed that the area under the curve of the scoring model constructed based on enhanced CT features was 0.941 (95% confidence interval: 0.891-0.973). When the total score was >1, the sensitivity of the scoring model in diagnosing gastrointestinal stromal tumor was 85.58%, the specificity was 88.89%, the positive predictive value was 88.51%, the negative predictive value was 86.04%, and the accuracy was 86.18%. The results of DeLong test showed that the area under the curve of the scoring model was better than that of the receiver operating characteristic curve of tumor size, enlarged vessels feeding or draining the mass, peritumoral lymph node enlargement, venous phase contrast enhancement rate, and other indicators alone in predicting the high risk of gastrointestinal stromal tumor, and the differences were statistically significant (Z = 26.510, P < .001; Z = 3.992, P < .001; Z = 6.353, P < .001; Z = 4.052, P = .013). Conclusion: The simple scoring model based on enhanced CT features is a simple and practical clinical prediction model, which is helpful to make preoperative individualized treatment plan and improve the prognosis of gastrointestinal stromal tumor patients.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3