Applications of electrochemical biosensors based on 2D materials and their hybrid composites in hematological malignancies diagnosis

Author:

Sun Caixia12,Huang Hao2,Wang Jiahong2,Liu Wenxin1,Yang Zhigang1ORCID,Yu Xue-Feng2

Affiliation:

1. Department of Hematology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Abstract

Hematological malignancies encompass a wide variety of severe diseases that pose a serious threat to human health. Given the fact that hematological malignancies are difficult to treat due to their unpredictable and rapid deterioration and high rates of recurrence, growing attention has been paid to their early screening and diagnosis. However, developing a rapid and effective diagnostic tool featuring a noninvasive sampling technique is still extremely challenging. In recent years, novel nanomaterials-based electrochemical biosensors have attracted great interest because of such advantages as simple operation, low cost, fast response, etc. As a kind of rising nanomaterials, two-dimensional materials have excellent electronic and chemical properties, which have been proven to improve the performance of electrochemical biosensors. This review summarizes the applications of different types of electrochemical biosensors (nucleic acid sensors, immunosensors, aptamer biosensors, and cytosensors) based on two-dimensional materials in the detection of biological molecules related to hematological malignancies. Two-dimensional materials-based electrochemical biosensors designed for the diagnosis of leukemia could rapidly detect the target biomolecules at a trace level and show great merits such as wide linear range, low detection limit, high sensitivity, excellent selectivity, and cost-effectiveness. In addition, these biosensors have also achieved satisfactory results in the diagnosis of lymphoma and multiple myeloma. Thus, two-dimensional materials-based electrochemical biosensors are attractive for the early diagnosis of hematological malignancies in clinical practice. Nevertheless, more efforts are still required to further improve the performance of electrochemical biosensors. In this review, we propose the possible main concerns in the design of future two-dimensional materials-based electrochemical biosensors, involving the development of sensors for synchronous detection of diverse target biomolecules, the exploration of other superior two-dimensional materials, the simplification of the sensors fabrication process, the construction of new hybrid structures and how to avoid possible environmental issues.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3