Forecasting Institutional LINAC Utilization in Response to Varying Workload

Author:

Raman Srinivas12ORCID,Jia Fan3,Liu Zhihui4,Wenz Julie12,Carter Michael3,Dickie Colleen12,Liu Fei-Fei125,Letourneau Daniel12

Affiliation:

1. Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada

2. Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada

3. Department of Industrial Engineering, University of Toronto, Toronto, ON, Canada

4. Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada

5. Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

Abstract

ObjectivesPandemics, natural disasters, and other unforeseen circumstances can cause short-term variation in radiotherapy utilization. In this study, we aim to develop a model to forecast linear accelerator (LINAC) utilization during periods of varying workloads. Methods: Using computed tomography (CT)-simulation data and the rate of new LINAC appointment bookings in the preceding week as input parameters, a multiple linear regression model to forecast LINAC utilization over a 15-working day horizon was developed and tested on institutional data. Results: Future LINAC utilization was estimated in our training dataset with a forecasting error of 3.3%, 5.9%, and 7.2% on days 5, 10, and 15, respectively. The model identified significant variations (≥5% absolute differences) in LINAC utilization with an accuracy of 69%, 62%, and 60% on days 5, 10, and 15, respectively. The results were similar in the validation dataset with forecasting errors of 3.4%, 5.3%, and 6.2% and accuracy of 67%, 60%, and 58% on days 5, 10, and 15, respectively. These results compared favorably to moving average and exponential smoothing forecasting techniques. Conclusions: The developed linear regression model was able to accurately forecast future LINAC utilization based on LINAC booking rate and CT simulation data, and has been incorporated into our institutional dashboard for broad distribution. Advances in knowledge: Our proposed linear regression model is a practical and intuitive approach to forecasting short-term LINAC utilization, which can be used for resource planning and allocation during periods with varying LINAC workloads.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3