Contrast-Enhanced CT Texture Analysis for Distinguishing Fat-Poor Renal Angiomyolipoma From Chromophobe Renal Cell Carcinoma

Author:

Yang Guangjie1,Gong Aidi1,Nie Pei2,Yan Lei1,Miao Wenjie1,Zhao Yujun1,Wu Jie3,Cui Jingjing4,Jia Yan4,Wang Zhenguang1ORCID

Affiliation:

1. PET-CT Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China

2. Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China

3. Pathology Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China

4. Huiying Medical Technology Co, Ltd, Beijing, China

Abstract

Objective: To evaluate the value of 2-dimensional (2D) and 3-dimensional (3D) computed tomography texture analysis (CTTA) models in distinguishing fat-poor angiomyolipoma (fpAML) from chromophobe renal cell carcinoma (chRCC). Methods: We retrospectively enrolled 32 fpAMLs and 24 chRCCs. Texture features were extracted from 2D and 3D regions of interest in triphasic CT images. The 2D and 3D CTTA models were constructed with the least absolute shrinkage and selection operator algorithm and texture scores were calculated. The diagnostic performance of the 2D and 3D CTTA models was evaluated with respect to calibration, discrimination, and clinical usefulness. Results: Of the 177 and 183 texture features extracted from 2D and 3D regions of interest, respectively, 5 2D features and 8 3D features were selected to build 2D and 3D CTTA models. The 2D CTTA model (area under the curve [AUC], 0.811; 95% confidence interval [CI], 0.695-0.927) and the 3D CTTA model (AUC, 0.915; 95% CI, 0.838-0.993) showed good discrimination and calibration ( P > .05). There was no significant difference in AUC between the 2 models ( P = .093). Decision curve analysis showed the 3D model outperformed the 2D model in terms of clinical usefulness. Conclusions: The CTTA models based on contrast-enhanced CT images had a high value in differentiating fpAML from chRCC.

Funder

Key Research and Development Project of Shandong Province

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Biomedical Engineering,Molecular Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3