Comparison in thermal stability and catalytic performance of H4PMo11VO40 heteropolyacid supported on mesoporous and macroporous silica materials

Author:

Zhang Heng1ORCID,Yang Chunhao1,Zhao Shengying1,Wang Tingting1,Zhu Wancheng1

Affiliation:

1. School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China

Abstract

Ordered mesoporous silica, SBA-15 and MCM-41, and three-dimensionally ordered macroporous SiO2 were used as the supports of H4PMo11VO40 heteropolyacid for methacrolein oxidation. The dispersion and structural evolutions of the heteropolyacid along with thermal treatment were investigated. It was found that the heteropolyacid entered the one-dimensional mesoporous channels of SBA-15 and MCM-41, and the crystallization and growth were limited, leading to high dispersion of the heteropolyacid. However, the thermal stability was decreased under high dispersion. The migration of the heteropolyacid was observed to the end of the one-dimensional channels of SBA-15 and the outer surface of MCM-41 with calcination, accompanied by the decomposition of the heteropolyacid and the formation of MoO3. In comparison, the crystallization and growth of heteropolyacid were not limited in the open macropores of three-dimensionally ordered macroporous SiO2. Dispersed particles on the surface of the macropores with size of about 5 nm exhibited a higher thermal stability. The decomposition of the heteropolyacid in the SBA-15 and MCM-41 supported catalysts resulted in the loss of strong acid sites, causing low selectivity to methacrylic acid in methacrolein oxidation. High thermal stability with high exposure of the active sites in the three-dimensionally ordered macroporous SiO2 supported catalyst contributed to the enhancement in the catalytic performance.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3