Preparation of an N-doped mesoporous carbon sphere and sheet composite as a high-performance supercapacitor

Author:

Hu Xiaolin1,Liu Lei1,Zhang Yue1,Chen Aibing1ORCID

Affiliation:

1. College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P.R. China

Abstract

Carbon-based materials with multidimensional structures generally exhibit improved properties compared with single-morphology carbon materials for various applications including catalysis, adsorption, and energy storage. Here, an N-doped mesoporous carbon sphere and sheet composite is prepared by a co-assembly strategy using an ionic liquid ([C18Mim]Br) as the structure-directing agent, ethylenediamine as the catalyst, tetraethyl orthosilicate as the pore-forming agent, and resorcinol formaldehyde resin as the carbon precursor. [C18Mim]Br and ethylenediamine not only induce formation of the unique structure but also lead to in situ nitrogen doping on the N-doped mesoporous carbon skeleton. The obtained N-doped mesoporous carbon shows a unique composite structure of thin sheets embedded with carbon spheres, having high a specific surface area and uniform mesopore distribution. When used as an electrode material, the N-doped mesoporous carbon shows a good specific capacity of 273 F g−1 at a current density of 0.5 A g−1 and a good rate capability (82.1% of the capacitance is retained at a high current density of 10 A g−1). Moreover, the N-doped mesoporous carbon exhibited ideal stability behavior (91.6% capacitive retention after 10,000 cycles), indicating a promising role as an electrode material for excellent performance supercapacitors.

Funder

hebei university of science and technology

natural science foundation of tianjin-science and technology correspondent project

national natural science foundation of china

Beijing National Laboratory for Molecular Sciences, the Hebei Province Introduction of Foreign Intelligence Projects

Publisher

SAGE Publications

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3