The tannic acid–based iron nanoparticle: A capable nanocatalyst for the green synthesis of polyhydroquinolines

Author:

Yousefzadeh Noorkhoda1,Habibi Davood1ORCID,Meshkatalsadat Mohammad Hadi2,Mahmoudiani Gilan Maryam1

Affiliation:

1. Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

2. Faculty of Basic Engineering Sciences, Qom University of Technology, Qom, Iran

Abstract

The tannic acid–based iron nanoparticle (TAN-Fe-NP) was prepared by a redox reaction between tannic acid and FeCl3 in water and characterized by the Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, energy dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Then, a TAN-Fe-NP nanocatalyst was used as an efficient catalyst for the synthesis of polyhydroquinolines from the reaction of ethyl acetoacetate, benzaldehydes, dimedone, and ammonium acetate in ethanol at 60 °C in high yields and low reaction times. Since this catalyst is made of natural materials, it has a great advantage compared with the other catalysts and is cheap, available, natural, safe, nontoxic, and eco-friendly as well.

Publisher

SAGE Publications

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3