Structural and mechanical properties of ternary MgCaSi phase: A study by density functional theory

Author:

Wu Rui1,Wang Ya-Ping1,Yang Yan1,Luo Dong-Ming1,Meng Hong1,Ma Li2,Tang Bi-Yu1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China

2. Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, Guangxi Teachers Education University, Nanning, P.R. China

Abstract

The structural, elastic, and electronic properties of multi-performance ternary phase MgCaSi have been investigated by density functional theory. The present results show that MgCaSi is thermodynamically and mechanically stable. The derived elastic constants indicate that the c axis is the easiest to compress, followed by the a and b axes. The bulk, shear, and Young’s moduli of MgCaSi are higher than these of the mother phase Ca2Si, demonstrating that the hardness of MgCaSi has been favorably improved. The higher Debye temperature of MgCaSi also indicates stronger interatomic interactions and better thermal conductivity. Although MgCaSi exhibits less brittleness based on Pugh’s empirical formula, Poisson’s ratio, and the Cauchy pressure, orthorhombic MgCaSi possesses lower anisotropy than Ca2Si based on several criteria. To reveal the bonding nature of MgCaSi, the electronic structures are further investigated. It is found that the strong Si−Si bond plays a significant role for structural stability and elastic properties.

Funder

natural science foundation of guangxi province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3