Design, synthesis, and antitumor activity of novel benzoheterocycle derivatives as inhibitors of vascular endothelial growth factor receptor-2 tyrosine kinase

Author:

Ding Yangyang1,Liu Kai1,Zhao Xinyu1,Lv Yingtao2,Yu Rilei3,Kang Congmin1

Affiliation:

1. College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China

2. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China

3. Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China

Abstract

The vascular endothelial growth factor receptor-2 signaling pathway promotes the formation of new blood vessels, and vascular endothelial growth factor receptor-2 tyrosine kinase exists in both active and inactive conformations. Novel indole–benzimidazole and indole–benzothiazole derivatives joined by different linkers are designed and synthesized as inhibitors of vascular endothelial growth factor receptor-2 tyrosine kinase. All the synthesized compounds were evaluated for their cytotoxicity against four human cancer cell lines (HeLa, HT29, A549, and MDA-MB-435) and human umbilical vein endothelial cell. Meanwhile, the inhibitory activities against vascular endothelial growth factor receptor-2 are estimated in vitro and the binding interactions with dual conformations of vascular endothelial growth factor receptor-2 tyrosine kinase are evaluated by molecular docking. Compounds 5a–c and 14 show inhibitory activity against vascular endothelial growth factor receptor-2 tyrosine kinase and promising cytotoxicity, specifically with IC50 values ranging between 0.1 and 1 μM, which imply broad-spectrum antitumor activity. These results provide a deep insight into potential structural modifications for developing potent vascular endothelial growth factor receptor-2 tyrosine kinase inhibitors.

Funder

Project supported by the key lab of marine bioactive substance and modern analytical technique, SOA

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3