Affiliation:
1. School of Civil Engineering, Shaoxing University, Shaoxing, P.R. China
2. School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, P.R. China
Abstract
The treatment of wastewater by adsorption is a good alternative technique and attracts extensive attention worldwide due to its versatility, scalability, and low operational costs. In this work, a Fe3O4 nanospheres/carbon core–shell structure is fabricated by combination of a template method and calcination. The morphology and crystal structure of the synthesized composite are characterized by transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectrometer, and from nitrogen adsorption–desorption isotherms, confirming that the carbon layer with a porous structure is successfully loaded onto the surface of the face-centered cubic Fe3O4 nanospheres to form a core–shell structure. The adsorption performance of the Fe3O4 nanospheres/carbon core–shell structure is investigated by studying the effects of the initial pH value of the solution, the contact time, the initial concentration of the pollutants, the adsorption temperature, and the amount of adsorbent. The Fe3O4 nanospheres/carbon core–shell structure effectively removes heavy metal Chromium(VI) and a reactive light yellow dye. The results of batch experiments show that the removal efficiencies of heavy metal Chromium(VI) and the reactive light yellow dye are close to 100% under optimized conditions. The good adsorption performance of the Fe3O4 nanospheres/carbon core–shell structure toward various types of pollutants suggests a potential application in wastewater treatment.
Funder
National Natural Science Foundation of China