The effect of CO2-doped spiro-OMeTAD hole transport layer on FA(1−x)CsxPbI3 perovskite solar cells

Author:

Fan Zhicheng12ORCID,Xing Chuwu3,Tan Yi4,Xu Jinxia14,Liu Lingyun14,Zhou Yuanming14,Jiang Yan14

Affiliation:

1. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan, China

2. School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan, China

3. School of Materials Science and Engineering, Hubei University, Wuhan, China

4. School of Science, Hubei University of Technology, Wuhan, China

Abstract

Black-phase formamidinium lead iodine with 1.48 eV bandgap is considered to be the most promising material for improving the near-theoretical limit efficiency of perovskite solar cells, but at room temperature, black-phase formamidinium lead iodine easily transforms into the yellow non-perovskite phase formamidinium lead iodine. Here, different ratios of Cs+-incorporated formamidinium lead iodine prepared by one-step processing with the stability and power conversion efficiency of formamidinium lead iodine perovskite solar cells are investigated. FA0.85Cs0.15PbI3 shows the highest power conversion efficiency of 10.63% (Voc = 1.04 V, Jsc = 16.81 mA cm−2, and fill factor = 0.60), and the unencapsulated device maintained 60% of the initial power conversion efficiency after storage in air with 40% humidity for 186 h with an active area of 0.1 cm2, when the ratios of Cs+ reached 15% ( x = 0.15) in formamidinium lead iodine. However, the efficiency of perovskite solar cell–based formamidinium lead iodine is still low. In this work, a simple but an effective strategy was carried out to rapidly and fully oxidize hole transport layer solution by doping CO2 or O2 under ultraviolet light irradiation to increase the conductivity of hole transport layer, thereby improving the power conversion efficiency of solar cells. The results show that FA0.85Cs0.15PbI3 solar cells by CO2-doped hole transport layer for 90 s exhibited the highest power conversion efficiency of 16.11% (VOC = 1.11 V, JSC = 19.73 mA cm−2, and fill factor = 0.74). The improved photovoltaic performance is attributed to CO2-doped spiro-OMeTAD increasing charge carrier density and accelerating charge separation, thereby inducing higher conductivity. CO2 or O2 doped can rapidly and fully oxidize spiro-OMeTAD, and reduce the solar cell fabrication time; it is beneficial to the commercial use of perovskite solar cells.

Funder

science and technology department of hubei province

national natural science foundation of china

youth and middle-aged scientific and technological innovation leading talents program of the corps

Publisher

SAGE Publications

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3