Tuning the optoelectronic properties of oligothiophenes for solar cell applications by varying the number of cyano and fluoro substituents for solar cell applications: A theoretical study

Author:

Franco Francisco C.1ORCID

Affiliation:

1. Chemistry Department, De La Salle University, Manila, Philippines

Abstract

Chemical modifications through substitution are observed to be effective in controlling the optoelectronic properties of various polymers for different applications. In this study, density functional theory–based calculations are employed to investigate the optoelectronic properties of several oligothiophenes based on poly(3-hexylthiophene-2,5-diyl) by varying the number of fluoro and cyano substituents attached. The resulting structures of the polymer derivatives are affected by the electrostatic interactions between the cyano or fluoro groups and the adjacent thiophene unit. Of the two, cyano substitution results in much lower frontier orbital energies for the same number of substituents. It was observed that a decrease in the highest occupied molecule orbital and lowest unoccupied molecular orbital energies correlates very strongly with the number of cyano and fluoro substituents. The effect of the cyano and fluoro groups on the frontier orbitals is also demonstrated and observed to correlate strongly with a lowering of the highest occupied molecule orbital and lowest unoccupied molecular orbital energies as the number of substituents is varied. The predicted solar cell characteristics reveal that most cyano and fluoro derivatives will have improved characteristics compared to unsubstituted poly(3-hexylthiophene-2,5-diyl). This theoretical study shows that by varying the number of electron-withdrawing substituents, the optoelectronic properties may be tuned for solar cell applications.

Publisher

SAGE Publications

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3