Transfer functions in dynamic generalized linear models

Author:

Alves Mariane B1,Gamerman Dani2,Ferreira Marco AR3

Affiliation:

1. Departamento de Estatística, Instituto de Matemática e Estatística, UERJ, Brazil

2. Departamento de Métodos Estatísticos, Instituto de Matemática, UFRJ, Brazil

3. Department of Statistics, University of Missouri, USA

Abstract

In a time series analysis it is sometimes necessary to assume that the effect of a regressor does not have only immediate impact on the mean response, but that its effects somehow propagate to future times. We adopt, in this work, transfer functions to model such impacts, represented by structural blocks present in dynamic generalized linear models. All the inference is carried under the Bayesian paradigm. Two sources of difficulties emerge for the analytical derivation of posterior distributions: non-Gaussian nature of the response, associated to non-conjugate priors and also non-linearity of the predictor on auto regressive parameters present in transfer functions. The purpose of this work is to produce full Bayesian inference on dynamic generalized linear models with transfer functions, using Markov chain Monte Carlo methods to build samples of the posterior joint distribution of the parameters involved in such models. Several transfer structures are specified, associated to Poisson, Binomial, Gamma and inverse Gaussian responses. Simulated data are analyzed under the resulting models in order to assess their performance. Finally, two applications to real data concerning environmental sciences are made under different model formulations.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3