Defensible Progress Monitoring Data for Medium- and High-Stakes Decisions

Author:

Parker Richard I.1,Vannest Kimberly J.1,Davis John L.1,Clemens Nathan H.1

Affiliation:

1. Texas A&M University, College Station, TX, USA

Abstract

Within a response to intervention model, educators increasingly use progress monitoring (PM) to support medium- to high-stakes decisions for individual students. For PM to serve these more demanding decisions requires more careful consideration of measurement error. That error should be calculated within a fixed linear regression model rather than a classical test theory model, which has been more common. Seven practical skills are described for improving the use of PM data for medium- to high-stakes decisions: (a) estimating a static performance level in PM, (b) fitting a level of confidence to an educational decision, (c) expressing an estimated score ( Yhat) with its measurement error, (d) judging reliable improvement from one time to a later time, (e) properly using slope versus trendedness, (f) expressing “rate of improvement” (slope) with error, and (g) controlling autocorrelation. An example data set and PM graphs are used to illustrate each.

Publisher

SAGE Publications

Subject

Rehabilitation,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3