Assessing the Situational Predictors of Drug Markets across Street Segments and Intersections

Author:

Hsu Ko-Hsin1,Miller Joel2

Affiliation:

1. Kutztown University of Pennsylvania, Kutztown, PA, USA

2. Rutgers University Newark, Newark, NJ, USA

Abstract

Objectives: This study examines the factors that are statistically associated with drug-dealing settings in Newark, NJ, and assesses whether there are systematic differences in these between street segments and on intersections. In doing so, it tests hypotheses consistent with a theory that there are higher and lower levels of social regulation by residents in the two kinds of settings, respectively. Methods: Applying a matched case–control design yields 128 pairs of locations. McNemar’s test and conditional logistic regression are used to uncover statistical associations. Situational data on drug-dealing settings were collected using observations through Google Street View (GSV). Results: A variety of factors are associated with street drug-dealing hot spots, including mailboxes and churches, not previously identified in the literature on street crimes. While findings show differences between drug markets correlates on street segments and intersections, these are only partially consistent with study hypotheses. Conclusions: This study contributes to our understanding of risk factors for drug markets, highlights variations between intersections and street segments in the way drug market risk factors operate, and demonstrates the value of GSV for spatial crime research.

Publisher

SAGE Publications

Subject

Social Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3