Characterization of CuO-doped tin dioxide thin films prepared by pulsed-laser deposition for gas-sensing applications

Author:

Naji Iqbal S1

Affiliation:

1. Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

The influence of doping level of tin oxide films with different amounts of CuO additives (5%, 10%, 15%, and 20%) on structural, optical, and electrical properties is investigated. The films were prepared by pulsed-laser deposition method. X-ray diffraction patterns show the polycrystalline structure for all films with tetragonal phase for SnO2 and monoclinic phase for CuO, and no reaction between them. The surface morphology of films was analyzed and it revealed nano-sized grains for samples doped with 10% and 15% CuO. Hall’s effect measurements show increasing conductivity with increase in the CuO ratio and transfer the type of charge carriers from n- to p-type with 20% CuO. The H2S sensing properties are influenced by the CuO ratio in the SnO2 films as well as the operation temperature. The SnO2 sensor loaded with 10% CuO is extremely sensitive to H2S and the best operation temperature is 50°C, and it exhibits fast response speed of 7 s and recovery time of 20 s for trace level (10 ppm) H2S gas detection.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3