Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder

Author:

Dey Subhalaxmi1,Ontela Surender12ORCID,Pattnaik Pradyumna Kumar3ORCID,Mishra Satyaranjan4ORCID

Affiliation:

1. Department of Mathematics, National Institute of Technology Mizoram, Aizawl, Mizoram, India

2. Department of Mathematics, National Institute of Technology Kurukshetra, Haryana, India

3. Department of Mathematics, Odisha University of Technology and Research, Bhubaneswar, Odisha, India

4. Department of Mathematics, ITER, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

Abstract

In various industries, one of the important aspects is the cooling processes for which the material exhibits its perfect shape and size. Intending to the aforementioned property the current investigation leads to carry out the features of the materialistic property of thermal radiation and the dissipative heat by incorporating these in the water-based hybrid nanofluid. The fluid past a stretching cylinder embedded with a permeable medium and the impact of the magnetic field, and thermal radiation are depicted in momentum and energy profiles. In addition to that, the role of the Hamilton-Crosser conductivity model for the behavior of various shapes of the carbon nanotube (CNT) nanoparticles with their volume concentration is also vital. The transformation of the dimensional form of the governing equations into the non-dimensional form is obtained with the use of proper transformation rules. Further, the proposed designed model is handled by employing the traditional shooting-based Runge-Kutta fourth-order technique. The significant properties of different components are deployed graphically and the validation with earlier study shows a good correlation. Moreover, the important characteristics of the outcomes are; the surface cooling, driven by increased thermal buoyancy, promotes fluid velocity while simultaneously influencing the curvature parameter and profile to slow down the accumulation of nanoparticles.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3