Synthesis and characterization of rigid water-blown, palm oil-based polyurethane/organically-modified clay nanocomposite foam

Author:

Dzulkifli Mohd Haziq1ORCID,Majid Rohah A2,Yahya Mohd Yazid1

Affiliation:

1. Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

2. Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia

Abstract

Despite the superior enhancement it could impose, incorporation of montmorllonite (MMT) nanoclay in polymer-matrix composites is still limited due to miscibility issues with its host matrix; which could be alleviated with surface-modification of the nanoclay. In this paper, diamino methylpentane-modified montmorillonite (DAMP-MMT) nanoclay was incorporated into a bio-based polyurethane (PU) foam at different weight loadings. Characterization tests were then carried out to investigate the influence of included organoclay on the mechanical properties, thermal stability, foam morphology, and foaming kinetics. MMT modification effect could clearly be observed with exfoliated microstructure at lower loadings, compared to pristine clay at similar loading. Presence of organic modifier tethered on the surface of nanoclay was found to act as catalyst which induced accelerated curing, affecting cellular size and structure of foam, which in return cascades into influencing mechanical and thermal properties of the foam. Compressive strength improved with addition of 1 wt.% clay, and deteriorated beyond this point; believed due to clay agglomeration at higher clay loadings. However, thermal stability showed improvement parallel with its clay content, believed owed to additional bonds formed between amine -NH2 from organoclay and – NCO from diisocyanates. Incorporation of organoclays in rigid bio-based PU foam shows great potential in moderate load-bearing applications while upholding “green chemistry” practice.

Funder

Universiti Teknologi Malaysia

Ministry of Higher Education Malaysia

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3