Triple diffusive free magneto-convection of electro-conductive nanofluid from a vertical stretching sheet

Author:

Vasu Buddakkagari1ORCID,Hussain Borbora Mustaque1,Bég Osman Anwar2,Gorla Rama Subba Reddy3ORCID,Tripathi Jayati1,Burby Matin2

Affiliation:

1. Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India

2. Department of Mechanical and Aeronautical Engineering, School of Computing, Science and Engineering, Salford University, Manchester, UK

3. Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright Patterson Air Force Base, Dayton, OH, USA

Abstract

In the present investigation, an analysis is carried out to study the MHD triple diffusive free thermo-solutal convection boundary layer flow of an electro-conductive nanofluid flow over a vertical stretching sheet. This problem is relevant to magnetic nanomaterials fabrication operations in which multiple species in addition to nanoparticles are present. In addition to the nanoparticle diffusion, two different salts (species) having different properties are considered. A variable magnetic field is applied transverse to the vertical sheet. It is assumed that the surface is in contact with the hot magnetic nanofluid at a temperature which provides a variable heat transfer coefficient. Buongiorno’s model is employed for the nanofluid. It is also assumed that the Oberbeck-Boussinesq approximation is valid and the mixture of nanofluid and salts is homogenous and is in local thermal equilibrium. In addition, the thermal energy equation features cross-diffusion (Soret and Dufour) terms for both components of salts having different concentration. Appropriate similarity transformations are deployed to render the model non-dimensional. The emerging transformed dimensionless non-linear non-dimensional ordinary differential boundary value problem is solved with the robust bvp4c method in MATLAB. Validation with previous studies has been included for special cases of the general model. The simulations show that the addition of nanoparticles and salts, strongly modifies Temperature and nanoparticle and salt 1 and 2 concentrations. With stronger magnetic field the velocity is suppressed as is momentum boundary layer thickness whereas temperatures are boosted.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3