Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel

Author:

AttahDaniel Emmanuel B1,Dikio Ezekiel D2,Ayawei Nimibofa3,Wankasi Donbebe2,Mtunzi Fanyana M1,Diagboya Paul N1ORCID

Affiliation:

1. Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark, Gauteng, South Africa

2. Department of Chemical Sciences, Faculty of Sciences, Niger Delta University, Wilberforce Island, Nigeria

3. Department of Chemistry, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria

Abstract

Though adsorption techniques are eco-environmentally friendly, most lack the effectiveness of complete contaminant elimination leading to increasing concerns about the presence of aqueous contaminants on humans. Thus, synergistic combination of low adsorption capacity adsorbents may be an effective method to enhance their aqueous contaminant uptake. Sol-gel synthesized lanthanum-1,4-benzene dicarboxylate metal organic framework (LaBDC MOF) and polyethylene oxide (PEO) hydrogel were combined to prepare a synergistic composite adsorbent (PEO-LaBDC) for aqueous methylene blue (MB) adsorption. Major properties of the pristine LaBDC MOF and PEO hydrogel were expressed in the characterized composite indicating successful preparation. PEO-LaBDC composite MB removal rate of MB was at least twice as fast (60 min) to those of the pristine LaBDC MOF (120 min) and PEO hydrogel (125 min). The fitting of kinetics model was fractal in nature, and optimum adsorption was on the alkaline end of the pH spectrum for all adsorbents (pH = 12, 10, and 10, respectively). Comparatively, the composite exhibited a better adsorption performance of ≈177% higher than the pristine LaBDC MOF; buttressing the idea that synergistic combination of adsorbents in composites could enhance adsorption processes. Therefore, the PEO-LaBDC composite is a promising adsorbent for the remediation of aqueous MB.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3