Joule heating and thermal radiation impact on MHD boundary layer Nanofluid flow along an exponentially stretching surface with thermal stratified medium

Author:

Shankar Goud Bejawada1ORCID,Dharmendar Reddy Yanala2ORCID,Mishra Satyaranjan3ORCID

Affiliation:

1. Department of Mathematics, JNTUH University College of Engineering Hyderabad, Kukatpally, Hyderabad, Telangana, India

2. Department of Mathematics, Anurag University, Venkatapur, Hyderabad, Telangana, India

3. Department of Mathematics, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

Abstract

The current investigation leads to the characterisation of the flow phenomena of hydromagnetic nanofluid thermal stratified through permeable medium due to the influence of the radiative heat energy. Additionally, the behaviour of chemical reaction, viscous as well as Joule dissipations enriches the flow profiles. The embedded system for the governing equation comprised of partial differential equations is distorted to nonlinear ordinary with the help of the similarity transformations. MATLAB software is used to implement numerical schemes such as the Runge-Kutta-Fehlberg methodology in conjunction with the shooting method. The effects of several non-dimensional factors on flow phenomena are shown graphically, and the simulated results for the rate coefficients are presented in tabular form. The results established are extremely closed and excellent concurrence with published work. The thermal boundary surface thickness is enhanced due to frictional heating with rising values of Eckert number. A rise in Dufour number leads to a reduction in temperature profile. In contrast, a rise in concentration leads to higher values of the Soret number.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3