Efficient generation of random fiber distributions in fiber reinforced composites

Author:

Kou Guangjie1,Feng Shuaixing2,Zhang Wei3,Chen Jiawei1,Xiao Junling1,Cai Hui1,Yang Zhengwei1ORCID

Affiliation:

1. Xi’an Research Institute of High Technology, Xi’an, China

2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, China

3. School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou, China

Abstract

This paper proposes a new algorithm to generate representative volume elements (RVEs) with random fiber distribution in fiber reinforced composites (FRC). The proposed algorithm is straightforward and easy to implement based on judging the maximum and minimum distances between a new fiber and existing fibers. The generation results demonstrate that the maximum fiber volume fraction gradually increases and oscillates violently before reaching 78.54% as the fiber radius rises. Moreover, with the increase of RVE size, the maximum fiber volume fraction changes gently when the fiber radius does not exceed 6.5 μm, but it changes dramatically at other fiber radii. Then, the fiber distributions of the generated RVEs are evaluated using the nearest neighbor distance, Ripley’s K function, and pair distribution function. The evaluation results indicate that the fiber distributions present randomness. Lastly, the effective elastic properties of the Carbon/Epoxy unidirectional FRC are predicted using the RVEs generated by the proposed algorithm, the RVEs generated by regularization, and the Mori–Tanaka method. It is found that the prediction using the RVEs generated by the proposed algorithm is more accurate than the regularization, compared with the Mori–Tanaka and experiment results. The proposed algorithm contributes to microstructure modeling in computational micromechanics.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Team Project of Shaanxi Province

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3