Optimization of a Semimetallic Friction Material Formulation

Author:

Lu Yafei1,Tang Choong-Fong,Zhao Yongli,Wright Maurice A.2

Affiliation:

1. College of Materials Science and Engineering, Beijing University of Chemical Technology, Box 82, Beijing 100029, PR China

2. Center for Advanced Friction Studies, Southern Illinois University, Carbondale, IL 62901-4343, USA

Abstract

A semimetallic friction material formulation consisting of Al2O3,B2O3, brass chips, graphite, NBR (nitrile rubber), steel wool, and benzoxazine (a ring-opening polymerized phenolic) with high friction coefficient ( μ) and low wear was developed using the Golden Section approach to search the optimal volume fraction of each ingredient in the formulations. All raw materials used were divided into three groups: fibers, fillers, and binder. The volume fraction of each ingredient in the formulations was calculated by means of V i = 0.618 n in phase 1, V j = V i ± V i × r m/ V F and V j = V i ± V i × r m/ V f in phase 2 and V j = V i ± V i × r m/( V F + V f) in phase 3. Two exponent equations, w = k0 V1 k1 V2 k2 … V p kp and μ = m0 V1 m1 V2 m2 … V p mp, were proposed to correlate the compositional dependence of wear and μ. The least-squares error method was utilized to calculate the effect of each ingredient on and wear. Experimental and calculated results proved that both brass chips and B2O3 play important roles in enhancing. After doing 18 formulation experiments that preformed using Friction Assessment and Screening Test (FAST), an optimized formulation (BB-17) with high μ (average μ = 0.701) and low wear ( w = 4.74%) was obtained.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3