Investigating the quasi-static puncture resistance of p-aramid nanocomposite impregnated with the shear thickening fluid

Author:

Baharvandi Hamid Reza1,Khaksari Peiman2,Alebouyeh Morteza3,Alizadeh Masoud4,Khojasteh Jalal5,Kordani Naser5

Affiliation:

1. School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran

2. Ceramic Division, Department of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran

3. Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

4. Department of Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

5. Department of Mechanical Engineering, Amir Kabir University of Technology, Tehran, Iran

Abstract

The effect of impregnating p-aramid fabrics with shear thickening fluids on their quasi-static puncture resistance performance has been investigated. To prepare the shear thickening fluid, 12 and 60-nm silica particles have been dispersed in polyethylene glycol by means of mechanical mixing. The results of rheological tests indicate that the reduction of particle size leads to the increase of suspension viscosity, increase of critical shear rate, and the diminishing of the frequency of transition to elastic state for the shear thickening fluids. Samples of p-aramid impregnated fabrics were subjected to the quasi-static puncture resistance test according to the American Society for Testing and Materials standard D6264. The quasi-static puncture resistance increased 4.5 times for samples with 35 wt% silica concentration relative to the neat sample. In particular, with the reduction of particle size, the samples undergo less deformation and can withstand larger loads at each shear thickening fluid concentration. However, at low and medium concentrations (15 and 25 wt%), the reduction in the particle size has a large effect on the load-bearing capacity of the fabrics. But in the case of 35 wt% concentration for both the 12- and 60-nm particles, the difference between maximum loads withstood by the fabric is negligible.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3