Experimental research on mechanical behaviors of GFRP bridge decks under alkaline solution

Author:

Xue WC1,Fu K1

Affiliation:

1. Department of Building Engineering, Tongji University, Shanghai, China

Abstract

Glass fiber-reinforced plastic composites are particularly attractive as bridge deck systems due to their high strength, low density, and excellent corrosion resistance, which are of importance to the bridge industry. According to ACI 440.3R–04, the tests consisting of 100 glass fiber-reinforced plastic bridge deck samples were conducted to evaluate the mechanical behaviors of glass fiber-reinforced plastic bridge decks (including tensile property and flexural property) in terms of temperature of the alkaline solution and time period. The parameters of temperature included 40℃ and 60℃, and the investigated corrosion time included 3.65 days, 18 days, 36.5 days and 92 days, respectively. The micro-formation of the glass fiber-reinforced plastic bridge deck samples surface were surveyed under scanning electron microscopy, which indicated that corrosion pits on the surface of glass fiber-reinforced plastic bridge decks became obvious and the interface between fibers and resins was severely damaged with the aging time and temperature increased. After being exposed to alkaline solution for 92 days at 40℃ and 60℃, the tensile strength of glass fiber-reinforced plastic bridge decks decreased by 35.43% and 40.58%, respectively, while the flexural strength decreased by 21.36% and 42.10%, respectively. In addition, the degradation model of tensile strength and flexural strength of glass fiber-reinforced plastic bridge deck under alkaline solution were proposed based on Arrhenius equation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3