Probabilistic Finite Element Analysis of ASTM D6641 Compression Test for Marine Grade Polymer Matrix Composites

Author:

Nader Jacques W.1,Dagher Habib J.2,El Chiti Fadi2,Lopez-Anido Roberto2

Affiliation:

1. Department of Civil and Environmental Engineering, and Advanced Engineered Wood Composites Center, University of Maine, Orono, ME04469, USA,

2. Department of Civil and Environmental Engineering, and Advanced Engineered Wood Composites Center, University of Maine, Orono, ME04469, USA

Abstract

The variability of compressive mechanical properties of a polymer matrix composite material with woven fabric reinforcement is studied using both experimental work and numerical simulations. Four E-glass/vinyl ester composite plates were fabricated using the vacuum-assisted resin transfer molding (VARTM) by a US Navy contractor. The materials and process selected are representative of marine grade composites typically used by the US Navy. Standard ASTM D6641 coupons were obtained from the plates and the laboratory results were compared with those of a 3D probabilistic finite element analysis (FEA). In the probabilistic FEA model, elastic properties, strength parameters and geometric properties of the woven fabric E-glass/vinyl ester coupons were considered as random fields, and generated using Monte Carlo simulations. The study evaluates the effects of spatial correlation, finite element size, probability distribution functions (PDF) types and failure criteria on statistical strength properties of the [0/90]2sf compression coupons. Comparisons of experimental and probabilistic FEA results provide useful information on how to assign mean, Coefficient of variance (COV) and PDF of material properties to individual finite elements within a mesh. The results are relevant in selecting proper test methods and developing design properties for these composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3