A Micromechanics Model for Predicting the Tensile Strength of Unidirectional Metal Matrix Composites

Author:

Subramanian S.1

Affiliation:

1. AdTech Systems Research, Beavercreek, OH 45324

Abstract

In this paper, a micromechanics model has been developed to predict the tensile strength of unidirectional metal matrix composites (MMC). A simplified shear lag analysis is used to estimate the local stresses in the various constituents (fiber/matrix/interface). In this work, the matrix is assumed to carry both normal and shear stresses. Global matrix plasticity is considered by assuming that the matrix behaves in an elastic-perfectly plastic manner. Local interfacial debonding is assumed to occur when the average interfacial shear stress exceeds the interfacial shear strength value. The shear lag analysis including the effects of interfacial debonding and global matrix plasticity is used to estimate the stress concentration in fibers adjacent to broken fibers and the ineffective length. The tensile strength is estimated by considering the accumulation of fiber fractures. The effects of residual thermal stresses and statistical distribution of strength of the fibers are also included in this analysis. Parametric studies were conducted to investigate the influence of various parameters such as fiber volume fraction, temperature, interfacial shear strength, matrix properties and fiber strength, on the unidirectional tensile strength of MMC. The model was also used to predict the effects of volume fraction and temperature, on the strength of SCS6/Ti 24-11 composites. The predicted values compared well with the experimental results.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3