On recycled carbon fibre composites manufactured through a liquid composite moulding process

Author:

Shah Darshil U1,Schubel Peter J2

Affiliation:

1. Department of Architecture, Centre for Natural Material

2. Innovation, University of Cambridge, Cambridge, UK

Abstract

The recovery of carbon fibres from waste and end-of-life carbon fibre reinforced plastic materials is both economically lucrative and environmentally necessary. Here, we characterise the physical and mechanical properties of recycled carbon fibre reinforced plastics (rCFRPs) composed of random and oriented non-woven recycled carbon fibre mats that were impregnated with liquid epoxy matrices using a vacuum-infusion set-up. The low areal density and poor compactability of the non-woven mats implied that press-moulding upon impregnation was essential to control laminate thickness and improve fibre content; this may limit the applications of the resulting rCFRPs. Moreover, the press consolidation process is thought to degrade fibre length, and is a likely cause for the lower-than-expected tensile properties of the rCFRPs. Expectedly, the oriented rCFRPs exhibited better tensile and compressive properties than the random rCFRPs. Notably, while the tensile strength of the rCFRPs was only up to 2.5 times better than the matrix, the tensile modulus was 4–10 times enhanced. Through a comparative literature survey, we found that the liquid composite moulded rCFRPs were outperformed by rCFRPs fabricated through other manufacturing processes (e.g. prepregging), particularly those employing high compaction pressures, and utilising long fibres recovered through pyrolysis and chemical processes, rather than the fluidised-bed process.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3