Affiliation:
1. Mechanical Engineering Department, Koc University, Istanbul, Turkey
2. Department of Mechanical Engineering, Center for Composite Materials, University of Delaware, Newark, DE, USA
Abstract
Resin transfer molding and vacuum-assisted resin transfer molding are two of the most commonly used liquid composite molding processes. For resin transfer molding, mold filling simulations can predict the resin flow patterns and location of voids and dry spots which has proven useful in designing the mold and injection locations for composite parts. To simulate vacuum-assisted resin transfer molding, even though coupled models are successful in predicting flow patterns and thickness distribution, the input requires fabric compaction characterization in addition to permeability characterization. Moreover, due to the coupled nature of flow and fabric compaction, the simulation is computationally expensive precluding the possibility to optimize the flow design for reliable production. In this work, we present an alternative approach to characterize and use an “effective” permeability in the resin transfer molding solver to simulate resin flow in vacuum-assisted resin transfer molding. This decoupled method is very efficient and provides reasonable results. The deviations in mold filling times between experiments and simulations for the resin transfer molding process with E-glass CSM and carbon 5HS were 4.7% and 1.0%, respectively, while for the vacuum-assisted resin transfer molding case using “effective permeability value” with E-glass CSM and carbon 5HS fabrics were 11.1% and 12.3%, respectively, which validates the approach presented.
Funder
The Scientific and Technological Research Council of Turkey
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献