Strain rate-dependent crash simulation of woven glass fabric thermoplastic composites

Author:

Ahmad Bilal1,Fang Xiangfan1ORCID

Affiliation:

1. University of SiegenGermany

Abstract

Woven fabric thermoplastic composites possess high specific strength and stiffness along with thermoformability. To utilize the full potential of these materials to achieve better crash-safe designs in automotive structural parts, their crash behavior must be predicted accurately. For reliable crash simulations, strain rate-dependent material data and equally capable material modeling are required. In this study, quasi-static and high-speed tests are carried out to measure tensile and in-plane shear properties. A strain rate-dependent continuum damage mechanics model is formulated to describe the deformation and damage behavior of woven glass fabric composites. Tensile and in-plane shear tests on a lab scale are used to calibrate the material parameters of the model. The model was implemented as a user-defined material subroutine (VUMAT) for Abaqus. Experimental results from coupon tests were used to verify the results of a single-element simulation. Finally, a structural level dynamic crash test of a u-profile on a drop tower was used to validate the predictions of the user material model.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference38 articles.

1. Hack M, Farkas L, Liefooghe C, et al. Addressing automotive engineering challenges in composite development by simulation. NAFEMS Benchmark Magazine, http://orbi.ulg.ac.be/handle/2268/184940 (2015, accessed 21 Mar 2016).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3