Hybridization of short glass fiber polypropylene composites with nanosilica and graphite nanoplatelets

Author:

Pedrazzoli Diego1,Pegoretti Alessandro1

Affiliation:

1. Department of Industrial Engineering and INSTM Research Unit, University of Trento, Trento, Italy

Abstract

The effects of various types and amounts of fumed silica and graphite nanoplatelets on the microstructure and thermomechanical properties of polypropylene composites containing 5, 10, and 20 wt% of short glass fibers have been analyzed. Hybrid composites were produced by melt compounding and compression molding. The aspect ratio of the short glass fiber decreased with the fiber loading and the nanofiller amount. The tensile strength and elastic modulus increased, while the elongation at break decreased as the content of both short glass fiber and nanofiller increased. A two-population model, based on the Halpin–Tsai and Tsai–Pagano composite theories, was used to predict the elastic modulus of the nano-micro hybrid composites. Experimental values appear to be reasonably consistent with model predictions. Tensile energy to break under impact conditions increased with the short glass fiber content but decreased with nanofiller amount. Moreover, storage modulus and creep stability were remarkably enhanced in short glass fiber composites by the presence of both nanofillers.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3