Influence of surface modifications on interfacial and mechanical properties in fibre-reinforced composites

Author:

Saka Dinç Zaide12,Eren Semiha1,Öz Yahya2ORCID,Eren Hüseyin Aksel1

Affiliation:

1. Department of Textile Engineering, Bursa Uludag University, Bursa, Turkey

2. R&D and Technology Directorate, Turkish Aerospace, Ankara, Turkey

Abstract

Carbon fibres play a crucial role in fibre-reinforced composite materials. Properties of these composites are not solely determined by the fibre and matrix. In contrast, the interface between fibre and matrix also plays a pivotal role. The presence of sufficient van der Waals and hydrogen bonds between carbon fibre and matrix is vital for achieving strong interfacial adhesion during the composite fabrication. However, due to the chemical inertness and hydrophobic nature of carbon fibre surfaces, establishing effective interfacial bonding with the matrix poses a challenge. To address this, a range of methods has been developed to modify the carbon fibre surface and facilitate the formation of functional groups. Combined methods, such as sized carbon fibre and ozone treatment, have gained widespread usage in overcoming these challenges. In this study, a detailed examination was conducted to compare differences between ozonation of desized and sized carbon fibres by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), Raman spectroscopy and scanning electron microscopy (SEM). XPS results distinctly demonstrated the transformation of epoxy groups into hydroxyl and carboxyl functional groups following the ozonation process. Notably, in the 60 min ozone treatment with 5 L/min (ozone-5), carboxyl groups increased from 1.27 to 8.12 %. In addition, in ozone-5 conditions, hydroxyl groups increased by 28.37 %. An escalation in graphite regions was also identified during the ozonation of the desized carbon fibre sample. Conversely, there was no significant alteration observed in the Raman value of sized carbon fibre samples. Furthermore, mechanical test results for both desized and sized carbon fibres after ozonation were compared. Ozone treatment of carbon fibres, regardless of whether sizing is present or not, leads to an increase in the interlaminar shear strength (ILSS). ILSS values for sized carbon fibres were initially 41 MPa. However, following ozone treatment, ILSS values of sized carbon fibres increased to 64 MPa. The tensile strength of sized carbon fibres increased from 772 to 831 MPa. This behaviour can be attributed to the increased amount of functional groups detected by XPS, Raman spectroscopy and the increase in roughness.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3