Enhancing sound absorption properties of open-cell natural rubber foams with treated bagasse and oil palm fibers

Author:

Tomyangkul Supitcha1,Pongmuksuwan Pornlada1,Harnnarongchai Wanlop1,Chaochanchaikul Kantima2

Affiliation:

1. Faculty of Engineering, Department of Materials and Production Technology Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

2. Faculty of Science and Technology, Division of Industrial Materials Science, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand

Abstract

The aim of this work was to study the effects of natural fiber type and loading content on the sound absorption efficiency of natural rubber (NR)/treated natural fiber composite foams. This was investigated by measuring the cell characteristics of composite foam, sound absorption coefficient (SAC), and viscoelastic behavior. Bagasse (BF) and Oil Palm (OPF) fibers were treated with sodium hydroxide (NaOH) solution and the optimal treatment conditions for BF and OPF were determined by varying treatment times and NaOH concentrations. Potassium oleate (K-oleate) was used as a blowing agent to create open-cell NR foam. The results indicated that the most suitable NaOH concentration for both BF and OPF was 10%wt. and optimal treatment times were 30 and 10 min, respectively. At low fiber loadings, the addition of treated BF and OPF resulted in a decrease in the average cell size and an increase in the number of foam cells. As loading increased above 5%wt., cell size and cell number exhibited the opposite trends. Both treated BF and OPF enhanced the sound absorption efficiency of NR foams, especially at medium and high frequencies. NaOH treatment improved the interfacial bonding between the matrix and natural fibers, and increased the roughness on the surface of BF and OPF, leading to an enhanced ability for BF and OPF to absorb sound waves. The results indicated that treated BF was more effective than treated OPF for increasing SAC values. Type and dispersion of fiber and viscoelastic behavior were important factors on SAC of composite foams more than cell characteristic.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3